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Abstract 

A completely wireless virtual reality framework that allows users to control virtual 

avatars by physically walking is becoming increasingly necessary as virtual reality 

technologies such as the Oculus Rift and HTC Vive are pushed into the mainstream 

market. Virtual reality is no longer an expensive tool only employed by the better 

funded researchers. To this end we proposed to create a novel virtual reality 

framework which lays the ground work for future researchers to utilize. The use of 

our virtual reality framework for research is validated through a virtual reality study 

which aims to help fill the knowledge gap of how individual pedestrians navigate 

through crowds. As a result of conducting our virtual reality experiment we have 

confirmed that our virtual reality framework is capable of observing qualitatively 

similar collision avoidance decisions of individual pedestrians when compared to 

previous researcher’s results. Additionally, we have confirmed the presence of a 

distance compression effect in virtual reality; increased gait instability, and modified 

personal space of users inside virtual worlds. Our virtual reality framework was 

positively received with an enjoyment score of 5.6 out of 7(7 being very enjoyable). 
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1 Introduction 

Crowd simulation is the process of simulating the movements of large numbers of 

virtual agents. Crowd simulations are used for a wide variety of applications, from 

being used for entertainment purposes; in movies and videogames, to assisting in 

architecture during building analysis and emergency evacuation studies. With such 

important application fields the scientific community has put a lot of effort into 

developing more and more realistic crowd simulation algorithms.  

In the past researchers have used their intuition for determining the behavioural 

rules for agents in crowd simulations. However, this often leads to unrealistic and 

un-validated crowd simulation models. Real world data needs to be collected in 

order to develop realistic virtual agents, scenarios and environments for crowd 

simulations. Virtual reality is a powerful and convenient tool which can be utilised 

to obtain qualitatively realistic pedestrian trajectories, navigation decision and 

collision avoidance decisions; which can be used to improve upon future crowd 

simulation algorithms.  

A completely wireless virtual reality framework that allows users to control virtual 

avatars by physically walking is becoming increasingly necessary as virtual reality 

technologies such as the Oculus Rift and HTC Vive are pushed into the mainstream 

market. Virtual reality is no longer an expensive tool only employed by the better 

funded researchers. To this end we proposed to create a novel virtual reality 

framework which lays the ground work for future researchers to utilize. The use of 

our virtual reality framework for research is validated through a virtual reality study 

which aims to help fill the knowledge gap of how individual pedestrians navigate 

through crowds.  

From our research, we found that we were able to further prove the distance 

compression effect in virtual reality [15, 16, 17], increased gait instability [27] and 

modified personal space of participants [26, 19]. Our Virtual reality framework was 

positively received with an enjoyment score of 5.6 out of 7(7 being very enjoyable). 
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1.1 Significance of Research and Problem Statement 

Many studies have investigated how pedestrians navigate as a group- this makes 

sense as according to the research the majority of people in a crowd are comprised 

of groups of people [7]. There is a very obvious research gap with only one very 

recent paper produced by Bruneau specifically investigating how individual 

pedestrians avoid crowds [12]. We propose to improve upon the previous work in 

this area through the use of our virtual reality framework and realistic virtual agent 

groups based on the findings of Moussaid [7]. Virtual reality has been proven to be 

a powerful tool for qualitative research [1] [12], and with it recently becoming more 

accessible and affordable, a solid framework needs to designed for future virtual 

reality studies.  We propose to create such a framework, which will enable avatar 

control through actually physically walking. 

1.2 Aims 

In this paper we seek to create a completely wireless full body virtual reality 

framework which will be validated through a virtual reality study investigating how 

individual pedestrians navigate through virtual crowds. This framework will lay the 

ground work for future research that can benefit from using a full body virtual 

reality system, such as additional investigation of individual pedestrians behaviours 

and decisions. We aim to implement an automated data collection system which 

will enable us to recreate the movements of the virtual crowd and the participant in 

a visualisation. The visualisation will allow us to visually observe with perfect 

precision the collision avoidance decisions and behaviours of each participant.   

Our contributions include: 

1. Production of a completely wireless full body virtual reality framework 

which can be utilized for future research. 

2. Investigation of how individual pedestrians navigate through crowds of 

realistic group formations with different visual appearances. 
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1.3 Thesis Structure 

The thesis structure is as follows: 

 Chapter 2 details preliminary information pertaining to crowd 

simulation. Chapter 2 also explores the current literature of using virtual 

reality systems for human locomotion behaviour research; exploring 

pedestrian group dynamics and the limitations of virtual reality and 

other more conventional pedestrian data gathering methods. 

 Chapter 3 explored both the hardware and software implementation of 

our virtual reality framework. 

 Chapter 4 phase1 investigates the amount of spatial drift of our inertial 

motion sensor based motion capture suit. 

 Chapter 4 phase 2 puts our virtual reality framework to the test by using 

it to investigate how individual pedestrians navigate crowds. 

 Chapter 5 discusses the results from our virtual reality study and 

validates our virtual reality framework. 

 Chapter 6 summarises our research and explored future directions of our 

work. 
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2 Preliminaries 

2.1 Crowd Simulation 

Crowd simulation is the process of simulating the movements of large numbers of 

virtual agents. Crowd simulation modelling has been extensively researched by the 

scientific community for decades. Crowd simulations have a wide variety of 

applications like being used for entertainment purposes in movies and videogames, 

assisting in architecture; during building analysis, and emergency evacuation 

studies. With such important application fields the scientific community has put a 

lot of effort into developing more and more realistic crowd simulation algorithms. 

2.2 Macroscopic and Microscopic models 

In the last few decades there has been a greater focus on developing more accurate 

and realistic microscopic models for crowd simulations. Microscopic pedestrian 

simulation models are based on local interactions between agents. Conversely, 

macroscopic pedestrian simulations are often described as behaving like a liquid or 

a gas. Macroscopic models consider pedestrians as a whole, ignoring the local 

dynamics of individuals and their interactions between other pedestrians or 

obstacles. Therefore, macroscopic models have a massive computational load 

advantage over microscopic approaches which need to perform individual 

calculations for each pedestrian agent [3].   

Researchers found that the macroscopic models were not capturing enough of the 

psychological behaviour of real pedestrians.  Fluid molecules, for example, do not 

have a need for personal space between themselves, nor are they distracted by 

interesting events while moving, whereas, people prefer to maintain some personal 

distance between themselves and they also have the capacity to be distracted by 

various events; such as pausing to take a photo of an expensive and rare motor 

vehicle[2]. Additionally, macroscopic models often assume that the population is 

made up of homogenous agents, which is not accurate for real-world situations 

[4].   

Microscopic models focus on the individual behaviours and decision making of each 

pedestrian agent. This attention to the finer details of pedestrian dynamics allows 
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microscopic models to overcome the limitations of macroscopic models. If the 

microscopic model properly defines a set of predetermined behavioural rules they 

will create more realistic pedestrian behaviour in a larger variety of situations than 

macroscopic models [5], [6]. However, in-order to obtain these rules, rich data sets 

need to be analysed. In the last 20 years, advances in technology have allowed for 

such datasets to be produced [4].  

2.3 Common microscopic models 

2.3.1 Social Force Models 

The social force model for crowd simulation was initially proposed by Helbing where 

he defined the basic equation of the social force model to simulate pedestrian 

motion. Helbing’s model gives virtual agents four different motivational factors that 

influence a pedestrian's motion. These are as follows: 

1. The desire of the pedestrian to reach a certain destination or goal, 

2. The influence from other pedestrians, such as their repulsive effect, 

3. The total repulsive force created to avoid a boundary or an obstacle, 

4. The attraction level of other pedestrians or objects [20]. 

2.3.2 Cellular Automata Models 

Cellular automata is a novel model for crowd simulation. [3] In cellular automata 

models, the simulation world is defined by a uniform grid of cells. At each discrete 

time step, the values of variables in each cell are updated according to a set of local 

rules and the values of the variables in the cells in its neighbourhood [21]. 

2.3.3 Agent-Based Models 

Agent-based crowd simulation is made up of autonomous decision-making agents 

[3]. The agents in agent-based models follow predetermined behavioural rules that 

allow the agents to perform various behaviours appropriately in crowd simulations. 

This characteristic makes agent-based models particularly useful for the study of 

pedestrian behaviours in complex environments [3]. 
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2.3.4 Reciprocal Velocity Objects. 

This model is able to simultaneously determine actions for thousands of agents, 

which each may have different objectives. These actions are computed 

independently for each agent, there is no agent to agent communication or central 

communication. Yet the model maintains collision free motion for each of the 

agents. Agents avoid collisions with each other by independently and 

simultaneously selecting a new velocity for itself, so that all of the agents are 

guaranteed to be collision free. However, each agent is making the assumption that 

the other agents are using the same strategy as they are when they select a new 

velocity. [24] 
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2 Literature Review 

2.1 Data Collection for Crowd Simulations 

In the past researchers have used their intuition for determining the behavioural 

rules for agents in crowd simulations. However, this often leads to unrealistic and 

un-validated crowd simulation models. Real world data needs to be collected in 

order to develop realistic virtual agents, scenarios and environments for crowd 

simulations. Realistic crowd simulations are used for entertainment purposes; in 

movies and videogames, assisting in architecture; during building analysis and 

emergency evacuation studies. With such important application fields it is 

important to ensure that the data for these simulations is validated by coming from 

real world video analysis[7,8,9,10,11 ] or through people participating in realistic 

virtual reality simulations[12,1, 19]. 

2.1.1 Video Recording Analysis: 

Video recording analysis provide researchers with a visual copy of the real world, 

which provides physical and visual data. Moussaid used video recording analysis of 

1500 pedestrians to obtain empirical data on pedestrian groups walking formations 

[7]. Moussaids findings were used to simulate the local behaviour of small 

pedestrian groups, which were then validated quantitatively through several 

metrics which were benchmarked against real world data [22]. 

Video recording analysis provides researchers with the following benefits: 

 Is easier to validate findings as it is 100% real life. 

 Can easily study group and individual pedestrians. 

 Is very good at investigating simple behaviours/ variables in crowded 

situations, such as pedestrian speed, group dynamics, impacts of density, 

etc.  

Although video recording analysis can obtain good data it does have some 

drawbacks: 

 It can suffer from a lack of precision [1]. 

 Researchers are often left wondering about people state's/motivations [1]. 
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 Includes uncontrolled elements [1]. 

 Almost impossible to study specific pedestrian behaviours, such as the 

impacts of other pedestrian appearance/speed/behaviour, different 

motivations etc. on pedestrians navigation behaviours. 

 Data collection is not automatic 

o Note video analysis is beginning to become more automatic [23]. 

However, automatic data collected using video analysis pales in 

comparison to what can be collected automatically using virtual 

reality. 

2.1.2 Virtual Reality: 

Virtual reality simulations require real people to move inside a virtual world where 

the researcher can gather data on the person’s movements, actions, and decisions. 

Virtual reality is prevalent in two forms; cave automated virtual environment (CAVE) 

and head mounted display (HMD). Previous research has shown virtual reality to be 

a powerful and convenient tool for investigating pedestrian behaviours and collision 

avoidance strategies. Previous work has proven virtual reality to be capable of 

obtaining qualitatively realistic data, such as collision avoidance strategies and 

navigation decisions.   

Bruneau collected qualitative decision making data (go through crowd or around 

crowd) about how individual pedestrians navigate through a virtual crowd using a 

joystick and 4 wall CAVE. Bruneau used the collected data to modify the RVO2 

crowd simulation framework with some new behavioural algorithms which 

embodied their participant’s navigation decisions.  Bruneau validated the new 

algorithms through a user study, finding that the new algorithms where perceived 

to be performing more realistic collision avoidance than the base RVO2 model [12].   

Olivier conducted a comprehensive virtual reality study that mimicked the real 

world works of [13, 14]’s study which investigated the collision avoidance between 

two real pedestrian walkers. Olivier found that virtual reality simulations are able to 

provide qualitatively realistic avoidance trajectories. Olivier observed quantitative 
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differences in avoidance distances, where the participants slightly over-adapted 

their trajectories, possibly due to the different distance perception in VR [16].   

Bruneau and Olivier’s works ultimately prove that virtual reality can provide reliable 

results for qualitative analysis, such as collision avoidance strategies and navigation 

decisions [1][12].   

 Virtual reality allows researchers to investigate pedestrian behaviour with great 

efficiency and effectiveness because of the following:  

 Only need one participant to observe individual behaviour in crowded 

situations.  

 Can accurately control and repeat a virtual reality experience over several 

participants. 

 Can accurately measure each individual participant's data. 

 Can easily and quickly manipulate factors in the simulation experience to 

observe their effects on the participants behaviour.   

 Automatic data collection. 

However, virtual reality is not without its weaknesses:  

 The world is perceived through a digital display which negatively influences 

participant’s visual perception, described as a distance compression effect 

[15, 16, and 17]. 

 Distorted movement velocity when compared to real life [18]. 

 Using gamepads/ joysticks for movement is too different to the actual 

walking motion, adding some bias to any results.[1] 

Motion tracking equipment can be utilized to allow users to control their virtual 

avatars by physically walking. This can remove the bias introduced by the use of 

gamepads or joysticks. Although, more realistic for the participant researchers have 

shown that controlling avatars by physically walking does not lead to quantitative 

data collection; the walking speed is reduced [25], personal space size is modified 

[26],[19] and navigation in virtual reality is performed with increase gait instability 

[27].  
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2.2 Collision Avoidance; Individual vs Group: 

There have been many studies investigating and simulating how people navigate 

together as a group [7, 8, 10, 11]. This makes sense, as according to Moussaids 

research, the majority of pedestrian crowds are made up of small groups, up to 70% 

in fact[7]. However, we still need to know how the minority interacts with the 

majority. Bruneau is one of the few researchers who have looked into specifically 

answering this question. Bruneau conducted a virtual reality study where he found 

that his 13 participants followed the rules of The Principle of Minimum energy 

(PME). PME states that humans tend to optimize their trajectory to use as little 

energy as possible to reach their goals [12]. Nonetheless, there was still some 

inconclusive situations which could not be defined by the PME, where both solution 

paths have the same or similar energetic cost. To evaluate these inconclusive 

situations Julian introduced two factors to help influence a decision from the 

participants; group appearance and group direction of motion.  

Pedestrian group formations discussed in the next heading, could play an important 

role in an individual's avoidance of groups, we do not know for sure because it has 

not been fully investigated yet. Additionally, the appearance of crowds has been 

shown to have some effect on an individual participant's avoidance strategies [12].  

2.3 Crowd Formations/ Shapes 

Moussaid analysed empirical data in the form of video recordings of the motion of 

pedestrian groups in public areas. The results of the analysis of the data, found new 

information regarding pedestrian group dynamics. Discovering that up to 70% of 

pedestrians are moving in small groups, made up of 2-4 friends, family or 

acquaintances [7]. Interestingly, Moussaid also observed the pedestrians in these 

groups moving in formations which are dependent on the density of the crowds. 

The following three distinct walking formations were observed (Figure 2-1): 

1. Pedestrians tend to walk in the “Line abreast” formation whenever the 

density of the upcoming obstacles allows. This formation allows pedestrian 

groups to easily communicate with each other as they advance towards 

their goal [7]. Additionally, the “Line abreast” formation has been observed 
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in the works of Perters who analysed video recordings of the motion of 

pedestrian groups in order to develop natural crowd simulations [8].  Koster 

conducted a study in which 30 students were told to leave a room through 

the exit at the same time; once through the door (bottleneck), the students 

formed “line abreast” formations [11]. 

2. When the crowd and/or obstacle density is moderate, the pedestrian 

group’s space is reduced, forcing a change in walking formation to the “V-

like” formation, facilitating the social communication between the group 

members.  For groups of two pedestrians, the “V-like” formation is replaced 

by a more compact “Line abreast” formation, in which the distance between 

the two group members is significantly reduced [7]. References to the “V-

like” pedestrian formation was also observed in Perters work [8].  

3. During high crowd and/or obstacle density, the need for safety overcomes 

the want of social communication and interaction. This results in the “River 

like” formation (leader follower model) [7], which is corroborated by Kretz 

who was using participants to test the effects of pedestrian flow and 

counter-flow in a corridor. They observed “lane formation” where the 

participants chose to follow the person in front of them when the density of 

the crowd has high [9].  Singh observed the river-like formations while 

investigating video footage, with the purpose of understanding pedestrian 

group and subgroup behaviour [10]. Koster observed the river-like formation 

being formed when pedestrians are moving through a doorway (bottleneck). 

 

Figure 2-1: Moussaid’s three group formations [7]. 
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When developing a simulation experiment that includes virtual crowds it is 

important to ensure that all of the key elements are perceived by the participants as 

being as similar to what they encounter in real life. For this reason, Moussaid’s 

research into group formations will play a key part in the design of our groups of 

virtual agents, which will reflect [7]’s three group formations; “line abreast”, “v-like’ 

and “river-like”.   

2.4 Crowd density 

In crowd simulations, density refers to the closeness that the virtual pedestrians are 

to each other in crowds or groups. The density of crowds and groups can have 

significant effects on the behaviour of individual pedestrian’s navigation decisions.  

Studies evaluating the use of virtual reality to study human personal space 

behaviour, has shown that participants maintain personal space bubbles around 

virtual humans which are qualitatively the same as the bubbles typically maintained 

around actual humans [19]. Research has found that the speed of real pedestrians is 

clearly dependant on the density level of the crowd. At low density pedestrians 

were observed moving faster than at a high density [7].  It has been found, that, on 

average, low density crowds are traversed by the majority of individuals and, high 

density crowds are avoided as a whole [12]. 

Through the use of Moussaids three group formations we will be inherently 

studying the effects of density on an individual's avoidance of crowds. Although, we 

do not expect to see any significant differences in results between our findings and 

Moussaids and Bruneaus[7, 12].  However, it will be interesting to study the impacts 

of using realistic group formations on an individual's avoidance behaviour.  
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2.5 Crowd appearance 

The appearance of an approaching crowd can have an impact on an individual’s or 

even a group’s avoidance decisions and behaviour. Understanding the impacts of 

appearance on an individual's avoidance decisions and behaviour is an important 

area of study for microscopic crowd simulations. Where each agent will have 

different decisions and behaviour to its neighbours. Researching how changes in 

appearance affect an individual participant will help define the rules for future 

microscopic crowd simulation models.  When avoiding a collision the virtual agents 

can take into consideration the rules when “thinking” about a navigational or 

behaviour decision (go through, go around, slow down etc...).  

Research into the personal space people give to individual virtual agents has 

revealed that people give more personal space to the individual agents who 

engaged them in a mutual gaze [19] verses those that had their eyes closed. This 

research can be expanded upon by investigating how an individual would react to a 

group of virtual agents facing the individual as they walk towards them. Will the 

virtual agents facing them have a significant impact on the avoidance behaviour of 

participants? Additionally, instead of having the virtual people close their eyes, we 

perform a more realistic alternative by investigating how an individual will navigate 

groups of virtual agents with their back facing the participants.  

Bruneau investigated the impact of crowds having an easily distinguishable social-

link with each other. They did this using a crowd of soldiers, finding that more of 

their participants went around the group of soldiers than going through [12]. 

However, Bruneau’s simulation lacked the pedestrian group formations observed by 

Moussaid [7].  It would be interesting to investigate if there is a qualitative 

difference in avoidance decision when faced with realistic group formations.  

There is some discrepancies in the literature related to using virtual reality to study 

the impacts of a virtual person's appearance on participants. Bruneau also studied 

the impact of repulsion on his participants by using zombie models. Bruneau and I 

(when I read the paper) expected to see the majority of the participants completely 

circumventing the zombie virtual agents. However, this was not the case; in-fact, 
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just less than half of his participants completely avoided the zombie appearing 

agents. He hypothesised that the reason for this was that his participants knew the 

zombies were not real. This is a dangerous hypothesis and it can negatively impact 

studying the effects of virtual people’s appearance on participants using virtual 

reality. Additionally, Bruneau’s differences in results for each appearance, normal, 

zombie and social-link were separated from each other by a difference of less than 

10%; which is disappointing and I believe could be linked to his participants knowing 

that the virtual agents were not real. We hope to observe greater differences when 

we study the impacts of appearance by creating a more realistic virtual reality 

simulation, enabling participants to control their virtual avatars by physically 

walking in the real world.   
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3 Implementation 

In chapter 2 we focused on investigating the literature of using virtual reality 

systems for human behaviour research; exploring pedestrian group dynamics and 

limitations of using both virtual reality and more conventional pedestrian data 

gathering methods for investigating pedestrian behaviours. Using the literature 

from the previous chapter we investigate the implementation of a new novel 

experimental virtual reality framework to be used to investigate how an individual 

navigates through crowds. 

3.1 Hardware Implementation 

 

Figure 3-1: Hardware implementation.  
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The hardware components of the system Include the Perception Neuron full body 

18 Neuron motion capture kit, head mounted display (Moto X 2nd Gen mobile) and 

High performance desktop computer. These components are all connected to each 

other wirelessly to allow the participants un-restricted movement.  

 The computer is running the Axis Neuron software which interprets the data 

sent by the Perception Neuron kit to create the motion capture.  

 The computer is using Nvidia GameStream technology to stream the 

Unity3D virtual reality simulation to the mobile display (Moto X 2nd Gen) 

running Moonlight (open source implementation of Nvidia GameStream for 

Android devices).  

 The screen from the mobile (Moto X 2nd Gen) is being used as the display for 

the Homido head mounted display. 

 

Figure 3-2: The Perception Neuron motion capture kit and head mounted display being used during the 

experiment. 
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3.1.1 Perception Neuron; Motion capture sensor suit 

Perception Neuron is an inertial motion sensor based motion capture system. The 

system uses inertial motion unit data fusion, human body dynamics and physical 

engine algorithms to deliver smooth and accurate motion capture. The inertial 

motion unit based sensors in the suit are called “Neurons” which are attached to 

the limbs of the body using velcro straps and are also connected to the Hub device 

via cables.  Due to inertial motion unit’s tendency to experience spatial drift 

overtime, each Neuron performs some drift correction before the data from each of 

the Neurons are gathered by the hub device and transmitted via WI-FI (or USB) to a 

computer running the Axis Neuron software. The Axis Neuron software then 

performs some data optimization and more drift correction before reconstructing a 

human skeleton comprised of 59 bones from the inertial motion unit data from the 

Neurons. This data is then sent as binary float values to the Unity3D game engine to 

drive the motion of the participant’s virtual avatar [31].  

3.1.2 Inertial Motion Unit Drift Correction 

The inertial motion units inside each of the Neurons include a 3 axis accelerometer, 

3 axis magnetometer and a 3 axis gyroscope. The data from each of these sensors is 

being used together, in a process called data fusion to determine the orientation, 

velocity and displacement of the inertial motion units in a global frame of reference 

[29]. 

Accelerometers and gyroscopes are used in inertial motion units as a baseline to 

determine the orientation with respect to a given body frame of reference. 

Gyroscopes sense orientation through angular velocity changes and subsequently 

find the orientation. However, gyroscopes have a tendency to drift over time due to 

only sensing the changes and having no fixed point of reference. The addition of an 

accelerometer reduces the drift of the gyroscope to be minimal. The accelerometer 

achieves this by giving the gyroscope a sense of gravity- which orients the 

gyroscope to a more exact angular displacement. Accelerometers are better at 

determining orientation when the device is closer to its fixed reference point, 
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whereas gyroscopes are better at determining orientation when the device is in 

motion.  Accelerometer sensors tend to distort accelerations due to gravity 

influencing the external force moving the mass when the accelerometer is in 

motion. The distortion accumulates as noise and erroneous spikes in the output. 

Together; a gyroscopes longer-term accuracy combined with the shorter term 

accuracy of an accelerometer provide more accurate orientation readings by 

utilizing the benefits from each sensor [30].  A magnetometer can be used to 

further reduce the drift of the device. Magnetometers find the direction of 

magnetic north. Magnetometers are not as accurate as gyroscopes. However, their 

data can be added to the gyroscopes data to improve the accuracy of the calculated 

orientation- by telling the gyroscope which way is north [29]. 

Data fusion and possibly other drift correction strategies or algorithms that are not 

advertised by the Perception Neuron developers is not enough to prevent an 

inertial motion sensor from experiencing drift overtime. Perception Neuron’s 

inertial motion sensors are no different. However, the spatial drift overtime is 

minimal (see chapter 4.1 for analysis of the drift). 
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3.1.3 Latency 

The Perception Neuron system is comprised of many components each adding to 

the overall input latency of the system.  It is important for any 3D games or 

simulations, virtual or otherwise for there to be low input latency.   

 The calculation of the on-board Neuron microcontroller unit has a measured 

latency of 10-13ms. 

 The data transmission from the Hub to Computer has a reported latency of 

~8ms(USB) and ~25ms(Wi-FI) [32]. 

 The calculation in the Axis Neuron Software has an average latency of 3-

5ms(depends on processing power of CPU, in our case we used a FX 8350) 

Overall the Perception Neuron kit has an input latency of roughly 26ms if the 

Hub is connected to the computer via USB, and 43ms of latency over a WI-FI 

connection. For comparison a basic (non-gaming edition mouse) in Windows 7 

has a measured input latency of 8ms and a gaming-edition mouse has an input 

latency of 1ms. There is still a ways to go for the Perception Neuron to reach a 

similar input latency that we are currently seeing in standard mouses. However, 

it should be noted that this kind of virtual reality technology is very new (Idea 

Proposed in 2014 via a kick-starter campaign and in the future it will become 

both more accurate in terms of drift correction and faster for reduced latency.  

3.1.4 Homido; Head Mounted Display (HMD) 

The Homido is a completely wireless HMD allowing the users to have total freedom 

of movement. The Homido is a low cost head mounted display, the display of the 

Homido is powered by a high powered mobile phone (Motorola Moto x 2nd gen) 

with a 1080p screen with a 60Hz refresh rate which means the latency between 

each displayed frame is 16.67ms. This particular combo has similar specs to the 

Oculus rift DK2 which both have a display providing a resolution of 960X1080 for 

each eye. Both the Oculus Dk2 and the Homido feature custom virtual reality lenses 

that provide the wearer with a 100 degrees field of view. The only important 

difference between the Oculus Dk2 and out Homido + Moto X combo is the Oculus 
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Dk2’s higher refresh rate on their display, 75Hz which means the latency between 

each displayed frame is 13.33ms. 

 

Figure 3-3: Homido Diagram 

The Homido is the logical choice for the experiment due to its similar specs to the 

DK2 and its ability to be completely wireless. While it is possible to force the oculus 

rift to become wireless by using a wireless HDMI transmitter and receiver there 

would still be latency, albeit possibly a few milliseconds smaller, but it would not be 

worth the cost of implementing. Furthermore, since the specifications of our 

Homido + Moto X combo and the Oculus Dk2 are more or less the same the only 

benefit to using the Oculus Dk2 would be the fact that it is more comfortable on the 

head than the Homido.  
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3.1.5 Moonlight NVIDIA GameStream: 

Moonlight is an open source implementation of NVIDIA's GameStream, used by the 

NVIDIA Shield devices. Moonlight reverse engineered the Shield streaming software 

and created a version that can be run on any Android device.  

An NVidia GTX 970 was used on the computer to run the virtual reality simulation 

and stream the video feed to Moonlight running on the Motorola Moto X 2nd gen. 

The Moto X and the computer where both connected to a 300Mbs 2.4 GHz band 

router. The computer was connected to the router with an Ethernet cable providing 

a connection speed of 100Mbs and the phone was connected wirelessly providing a 

connection speed of 72Mbs.  

Moonlight streamed the simulation to the Moto x at a resolution of 1280x720 with 

a frame rate per second (FPS) of 60 and a default target video bit-rate of 10Mbs. I 

found these settings to provide the best experience for the user. Bumping the 

resolution to 1920x1080 and a FPS of 60 with a default target video bit-rate of 

20Mbs gave a slight and unpredictable stutter that was very noticeable during head 

tacking when user was rotating their head. Streaming at 720p with 60FPS has an 

average frame decoder latency of ~12ms, while streaming at 1080p with 60FPS gave 

an average frame decoding latency of ~24ms.  The video was encoded using the 

H.264 standard instead of the more superior H.265 standard, H.265 is reported to 

give up to double the performance of the previous H.264 standard [33]. 

Unfortunately, even though both the GTX 970 and Moto X are supposed to support 

the H.265 standard Moonlight would fail to find the H.265 decoder on the Moto X 

when it was selected in the settings. 
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3.1.6 Evaluation of the overall latency 

A variety of sources combine to result in an overall latency of roughly up to 89.67ms 

for our virtual reality system.  The breakdown is as follows: 

 The calculation of the on-board Neuron microcontroller unit has a measured 

latency of 10-13ms. 

 The Data transmission from Hub to Computer has a reported latency of 

~25ms (Wi-FI) [32]. 

 Calculation in Axis Neuron Software has an average latency of 3-

5ms(depends on processing power of CPU, In our case we used an FX8350) 

 Graphical rendering latency depends on end usage program, in our case 

Unity3D and has a measured latency of roughly (15-18ms) depends on how 

many agents are in view of the avatar. 

 Latency of the display being used, in our case we are using a mobile display 

with a refresh rate of 60Hz, which means it will take 16.67ms for each frame 

to be displayed- it should be noted that the simulation was running at above 

60 FPS on the host computer and is being streamed at 60FPS to the mobile 

device inside the Homido with an average frame decoder latency of ~12ms. 

Therefore, we have an estimated measured latency of up to 10+25+3 to5+15 to 

18+16.67+12= 81.67ms to 89.67ms.  This means that it takes roughly up to 0.089 

seconds for the participant’s movements to be reflected by the system. It should be 

noted that this is also the latency of the head tracking of the participants as we are 

using the rotation data from the head mounted Neuron to update the rotation of 

the stereoscopic camera in Unity3D. It is expected that the high latency for the head 

tracking will add some bias to the experiments conducted and will be discussed in 

chapter 4.2.3.2 

 

 

 



 
23 

 

3.2 Software Implementation 

In this chapter we are discussing the implementation of all of the software 

components of our virtual reality framework. The software elements include the 

virtual agent’s implementation, the implementation of stereoscopic 3D vision and 

head tracking, and the integration of the Perception Neuron kit into Unity3D. 

3.2.1 Virtual Agents Technology 

Realistic virtual agent navigation is important for the integrity of an experiment that 

is using virtual people to investigate a real persons navigation decisions. It was also 

the hardest component to implement. We chose to use a Reciprocal Velocity 

Obstacles (RVO) based pathfinding implementation for our virtual agent’s 

navigation. The reason for this is that during a collision avoidance situation both 

agents work together to avoid a collision, this is similar to the behaviour observed in 

a study comparing the walking trajectories of 2 walkers on a collision course with 

each other [13]. 

3.2.1.1 A* Pathfinding Project for Unity 3D; Local Avoidance 

The agents in the virtual reality simulation are being driven by the Local Avoidance 

system included within the A* Pathfinding Project for Unity 3D, which is based on 

RVO: Reciprocal Velocity Obstacles. The RVO Implementation is sampling based and 

uses gradient descent to find the optimal velocity for the agents [34].   

The local avoidance system in the A* Pathfinding Project for Unity 3D is based on 

the works of Jur van den Berg who proposed the concept of Reciprocal Velocity 

Obstacles for real-time multi-agent navigation. When performing collision 

avoidance RVO agents implicitly assume that the other RVO agents will make similar 

collision avoidance decisions. Essentially, the agents both adjust their speed, and 

direction to avoid colliding with each other. RVO guarantees safe and oscillation 

free motion for the agents [35]. 
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3.2.1.2 A* Pathfinding Local Avoidance Performance 

The A* Pathfinding Project for Unity 3D is capable of simulating 5,000 agents at 

20fps if the simulation is powered by a powerful enough central processing unit 

(CPU). It should be noted that the visualisation for this performance test was done 

by creating a mesh which held one quad for each agent. The reason for this is that 

at such a high number of agents, creating a GameObject for each agent is a slow 

process, just creating that many game objects took about 10 seconds. The agents 

were arranged in a circle and are tasked with moving towards their antipodal points 

[34] (Figure 3-4).  

 

Figure 3-4: A* Pathfinding Local Avoidance performance test. 

 An AMD FX 8350 central processing unit was used to run the simulation with 5,000 

agents at a comfortable 55-60 fps (frame rate capped at 60fps). However, With 

10,000 agents the frame-rate dropped to 10-15 fps. The steep decline in frame-rate 

shows that this particular implementation of RVO is best suited to a maximum of 

5,000 agents. However, the scalability of the A* Pathfinding projects RVO 

implementation does not limit my experiment as I only need about 50 agents to be 

active at once during the crowd simulation. 
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3.2.1.3 Limitations of A* Pathfinding Local Avoidance 

A* Local Avoidance is not the golden gun for crowd simulation, it comes with a few 

glaring limitations:  

1. The local avoidance system only considers obstacles a few seconds into 

the future. This leads to agents being forced through obstacles, or each 

other. For example, if two agents meet in a very thin corridor one of the 

agents will be pushed through the obstacle to make room for the other.  

The yellow circles indicate the radius of the RVO Collider, the red boxes 

are the obstacle points. As you can see the agents are forced through the 

obstacles. If the system had longer term planning it might be able to 

resolve the situation by not getting into the situation in the first place. 

However, having the agents push through the obstacles is still better 

than the agents being stuck in the corridor because there is no 

space(Figure 3-5).   

 

Figure 3-5: A* Pathfinding Local Avoidance has a tendency to push through wall and each other in 

dense environments.  

2. Powerful, but unrealistic avoidance in densely packed environments. 

For example; in a scenario where there are two lines of densely 

packed agents moving to opposite sides of the screen (Figure 3-6, 

Fig1). The avoidance behaviour of the system in this scenario, is not 

very realistic with the agents avoiding around the opposite line of 

agents one by one on the ends (Figure 3-6, Fig2). Realistically, the 

agents should be following the findings of Moussaids research into 
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the walking behaviour of pedestrian groups; splitting into river-like or 

at least v-like formations to allow more space for the agents to 

smoothly avoid each other(Figure 3-6, Fig3)[7]. 

 

Figure 3-6: A* Pathfinding Local Avoidance does not follow Moussaids observed formations. 

3.2.2 Virtual Agents Implementation and Design 

We set the A* Pathfinding Local Avoidance controller to update the agents at a 

speed of 20 frames per second and we are using the gradient decent algorithm to 

find the optimal velocity for the agents.  The most challenging part of implementing 

the virtual agents was getting them to navigate the environment as realistic groups 

based on Moussaids three group formations. In real life scenarios Moussaid 

observed the line-abreast formation in low density crowds. The v-like formation is 

observed when the density of the crowd would be described as moderate, and the 

river-like formation is observed in high density crowds ( Figure 2-1) [7]. 

A* Pathfindings Local Avoidance implementation does not support grouping. Our 

solution to force this behaviour on the agents is to create what I refer to as a leader 

agent. The leader agent has a waypoint destination and 3 waypoints connected to it 

which are the waypoints for each agent in the group.  The leader agents are set to 

avoid each other while ignoring the actual virtual agents. It was theorized that the 

leader agent would steer each agent group around each other (Figure 3-7).  
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Figure 3-7: Solution to force grouping behaviour.  

Initially the distance between the waypoints and the agents was only 1 unit in 

length. This allowed the agents to avoid each other as a group quit effectively as 

they navigated based on the leader agents decisions (Figure 3-8). 

   

Figure 3-8: Avoiding other agent groups without breaking formation 

However, there are some issues with this particular implementation. If the 

participant’s avatar is moving- which they will be there is simply not enough time 

for the virtual agents to make any avoidance around the participant’s avatar as their 

way point destination is too close.(Figure 3-9). 
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Figure 3-9: The virtual agents do not have enough time to navigate around the player’s avatar, the red box is the 

dynamic obstacle location of the avatar. 

The decision to increase the distance was made to allow the virtual agents to “see” 

and make some avoidance around the participants if necessary. We found it to be 

more important for the integrity of the experiments to ensure that the agents 

would be able to navigate around the participant if they had to. This was more 

important than the agents being able to navigate around each other as group 

because in real life collision avoidance situations between pedestrians it is a 

collaborative effort to not collide with each other. It has been shown that between 

2 pedestrian walkers, collision avoidance is a collaborative, but role dependant in 

nature. The results show that on average one of the pedestrians are giving way to 

the other by contributing 60% of the effort to the collision avoidance, while the 

other contributes on average 40% of effort to the avoidance. The percentage of 

effort was calculated by comparing the computed principle of minimum energy and 

comparing that to the actual trajectories and time of completion between the two 

walkers [13]. 

Unfortunately, increasing the distance left the agents with some undesirable 

behaviour when avoiding each other- which is highlighted in Figure 3-10, which 

shows the grouped agents stopped being able to navigate around other oncoming 

agent groups as a whole unit. However, it is nice to see on the left of Figure 3-10, 

where the group moving to the left adopts the v-like formation as they avoid 

through the group moving towards the right. The virtual agents are now able to see 

and navigate around the participant’s avatar if they have to. The virtual agents are 
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notified of the participant’s avatars location every 0.1seconds, by calling a function 

to update the pathfinding graph for the agents navigation.  

  

Figure 3-10: Agents no longer able to avoid around the oncoming agent groups.  

We initially designed the virtual agents to mimic the walking speed of real 

pedestrian groups based on research by Moussaid [7]. However, during testing the 

speed felt too fast, possibly due to the distance compression from viewing the 

virtual world through a digital display [15, 16, 17]. Additionally, walking speed is 

reduced while inside a virtual reality world [25]. Therefore, it makes sense that we 

would not be able to use real world walking speeds for a virtual agents.  We 

reduced the speed of the back facing virtual agents in the low density tests by 33% 

to try and force the participants to either go through or around the back facing 

agents.  
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3.2.3 Stereoscopic Display and Head Tracking. 

For the stereoscopic display we are using the camera rig from the Unity3D Google 

Cardboard integration package [36].  The Google Cardboard stereoscopic display 

works very well in the Unity3D editor. However, when the Unity3D project was built 

it was missing the distortion correction (Figure 3-11). Due to time constraints we 

were unable to figure out why this was happening. When the distortion correction 

is missing the objects in the scene appear slightly distorted as, the image on the 

bottom shows the shapes and environment appearing to be slightly longer than 

they actually are if we refer to the non- distorted image on the top. It is expected 

that the lack of distortion correction will add some bias to the experiments 

conducted- which is discussed in chapter 4.2.3.2.

 

Figure 3-11: Image on the top has distortion correction and is what is seen in the Unity3D editor, the image on 

the bottom does not have distortion correction and is what the project was built as. 
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The head tracking of the virtual reality system is being performed by the head 

mounted Neuron from the Perception Neuron kit. The stereoscopic camera rig’s 

position and rotation is equal to that of the Perception Neuron avatars head 

position and rotation. The head mounted Neuron is very sensitive- so while walking 

the user would experience a fair amount of roll for each step they took; about 4-6 

degrees of roll (Figure 3-13)- making the whole virtual reality world wobble every 

time the participant moved their head. It should be noted that the developers of 

the Perception Neuron kit do not recommend that the head rotation data from the 

Perception Neuron system be used for head tracking, the reason for this would be 

due to the fact that you need to smooth the output values- as the raw output is too 

sensitive for comfortable head tracking [31].  However, there was no easily and 

quickly implementable alternative, in the time frame that we had. The yaw and 

pitch of head tracking felt fine. We attempted to smooth the output from the head 

mounted Neuron on the Z axis, but nothing we tried was able to remove the wobble 

completely.   Due to this immersion breaking behaviour we decided to stop 

updating the cameras position on the Z axis. We do not feel that doing so will have 

any effect on the results at all as there is no reason during any of the experiments 

for the participant to rotate their head along the Z axis. 

 

Figure 3-12: Head Mounted display yaw, roll and pitch. We had to remove the roll ability. 
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3.2.4 Perception Neuron Integration 

Perception Neuron was integrated into Unity3D by using the Unity3D integration 

package (V 0.25) supplied by Perception Neuron. The perception Neuron integration 

requires you to create a new layer called “body” and remove the ability for the 

“body” layer to collide with itself in the settings. It was then a matter of dragging 

and dropping the Perception Neuron avatar prefab into the unity3D scene. The 

positional and rotation data representing the user’s current position and rotation is 

being broadcast locally from the Axis Neuron software as binary float values, in the 

BVH format via a TCP connection to ensure accurate motion tracking. The rotation 

and positional data for each of the limbs and body parts are then used to rotate and 

move the avatars limbs and body parts in Unity3D. 

 

3.3 Virtual Reality Framework 

 

Figure 3-13: Complete virtual reality Framework. 
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4 Experiment Design and Methodology 

In the Previous chapter we discussed the Implementation of the hardware and 

software components required to build our experimental virtual reality framework. 

In this chapter we are taking our proposed virtual reality implementation and using 

it for the investigation of individual pedestrian’s navigation decisions when moving 

through crowds.   

Phase 1: Testing the spatial drift of the perception neuron suit to ensure the 

participants won’t drift into any walls. 

Phase 2:  Using Virtual reality in the form of a motion capture suit and head 

mounted display to study how an individual pedestrian will navigate through virtual 

crowds. 

4.1 Phase 1: Testing the Spatial Drift over time of the Perception Neuron 

Suit. 

Before we can perform any experiments investigating how an individual navigates 

through a crowd using our virtual reality framework we first need to benchmark the 

spatial drift of the Perception Neuron inertial motion unit based motion capture 

suit. Due to inertial motion sensors susceptibility to drift over time it is imperative 

to know exactly how much the Perception Neuron suit drifts overtime when it is 

being used as the avatar controller for a 3D virtual reality simulation or game with a 

head mounted display.  

When designing the 3D environment we need to take into account the drift that the 

suit creates when setting the environments dimensions. The dimensions of the 

virtual world need to be x metres less than the real world area the suit is being used 

in because we don’t want the user to drift into a wall. The purpose of this 

experiment is to determine what x should be for the designing of safe 3D 

environments for the Perception Neuron suit to be used in. 
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4.1.1 Framework and Design 

During this experiment I am moving back and forth between location A and B in the 

real world for 1,2,3,4,5,6,7 and 8 minutes. I am measuring the amount of spatial 

drift that the virtual avatar in Unity3D is experiencing over time. This experiment 

was performed 10 times. However, there was some calibration issues with the suit 

which lead to two separate data sets: 

1. Good motion capture data (6 times) -where after the 8 minutes of 

continuous use the motion capture of the suit is still decent. 

2. Bad motion capture data (4 times) - where after 8 minutes of continuous use 

the motion capture of suit is unacceptable. 

The reason for the suits unacceptable motion capture after 8 minutes in some cases 

is unknown. Although, if I had to guess I would say it is due to a combination of 

variables; my personal error when performing the calibration poses, or the sensors 

moving positions due to the straps on my body moving slightly out of position. 

Regardless of the reasons for the bad motion capture, the two datasets will be 

interesting to compare; as there is always the chance of participants in a virtual 

reality study being incorrectly calibrated. 

From this experiment we hope to establish the amount that the suit drifts after 

continuous use for 1,2,3,4,5,6,7 and 8 minutes and if the amount of spatial drift 

increases linearly or exponentially over time. 

The experiment setup (Figure 4-1) for the experiment consists of wirelessly 

connecting the Perception Neuron suit with the Axis Neuron software. The 

Perception Neuron suit is paired with the Unity3D simulation by using the Unity3D 

integration package developed by the Perception Neuron developers. Additionally, 

a wireless mouse is used to record the virtual avatars position inside Unity3D when 

the wearer of the suit reaches the location A or the location B in the real world. 
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Figure 4-1: Spatial drift experiment equipment setup. 

The real-world test area had two chairs placed 5 metres apart to act as point A and 

point B. It should be noted that the points (chairs) are placed 20cm passed the 5 

metre and 0 metre mark. This allows us to move roughly 5 metres in between the 

two points without running into the points (chairs). However, there will be a 

deviation of up to 20cm passed the 0 or 5 metre marks respectively. Furthermore, 

the points (chairs) are placed directly in line with each other. The real-life test area 

is reflected in Unity3D where each unit is equal to 1 metre. Therefore, point A and 

point B in Unity3d are placed 5 units apart (Figure 4-2). 

 

Figure 4-2: The points in unity are 5 units (metres) apart. 

4.1.1.1 The data to be recorded includes: 

 X, Z Coordinates of the avatar in Unity3D. 

 The time it took to go from point A to point B. 
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4.1.1.2 Procedure: 

1. Strap on the Perception Neuron suit. 

2. Connect to the suit to the Axis Neuron software. 

3. Set the skeletons height to 180cm in Axis Neuron software. 

4. Run calibration poses on the starting location. 

5. Ensure the suit is providing smooth leg motion (this drives the motion of the 

avatar so it is very important). 

6. Start experiment simulation 

7. Walk for 8 minutes in between location A and B. 

8. Check and note if the skeleton in axis neuron is still giving acceptable data.  

9. Disconnect the suit. 

10. Repeat steps 2 to 8, 10 times. 

4.1.2 Results: 

4.1.2.1 Limitations of data collected 

The biggest limitation of the data that has been collected from this experiment is 

the positional data of the suit not being able to be captured at the exact minutes. 

The reason for this is because it is not possible for me-being a human to sync my 

movements to land on either point A or point B for each minute perfectly. 

Additionally, where the timescale of some of the charts is in minutes the positional 

data for points A and B are captured on average about 11 seconds apart as shown in 

Figure 4-3.  

 

Figure 4-3: Points not able to be captured on the exact minutes.  
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4.1.2.2 Outliers 

Figure 4-4 highlights the outliers and the average drift on each axis for both point A 

and B from 8 minutes of continuous use. The highest outlier amount of drift 

experienced by the avatar was 5.56m on the Z axis in the bad dataset, while the 

good datasets highest outlier is 2.3726m on the X axis.  The cause of these outliers 

is un-known, they could be problems with calibration, the Neurons on the body 

moving out of position, or even slight network lag or dropouts.  Regardless of the 

reasons why they are here, they do need to be taken into account when 

determining safe dimensions for our virtual reality environment, because they 

occurred once and could occur again. However, if we could ignore the presence of 

the outliers and look only at the average amount of drift from each of the tests 

conducted the amount of drift is very impressive. The good motion capture dataset 

had an average drift from both points of 0.99m (X axis) and 0.96m (Z axis) from 8 

minutes continuous use. Whereas, the bad motion capture dataset experienced 

considerably more drift with 1.76m (X axis) and 2.36m (Z axis).    

 

Figure 4-4: The accumulated amount of drift over 8 minutes for both the good motion capture data set and the 

bad motion capture dataset. 

4.1.2.3 Incorrect angle of motion 

Unfortunately, all the data points I collected have an incorrect angle of motion 

(Figure 4-5). This is bad because in the real world we were walking in a straight line. 

The angle of motion in real life could be described as very close to 0 degrees. The 

incorrect angle of motion is caused by the avatar being rotated at the wrong 

degrees.  This is a significant problem for the designing of safe dimensions for the 

virtual environment. If you travel 5 metres in a straight line and the avatar has an 

incorrect angle of motion on 9.6 degrees the avatars position in the virtual 
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environment will be offset by 0.84 metres on the Z axis, and if you travel 15 metres 

the avatar will be offset by 2.53 metres. The reason for why the incorrect angle of 

motion is occurring is unknown. However, the fact that it is occurring does need to 

be taken into consideration when determining safe dimensions of the virtual reality 

environment.  

 

Figure 4-5: The angle that the avatar was walking at. 

4.1.2.4 Visualisation of the Drift (Metres) Over Time (Minutes) 

Figure 4-6 to Figure 4-9 display the amount of drift in metres for each minute 

interval. It should be noted that the graphs are showing the drift along each axis(X 

and Z) for each of the points. The results appear to be very sporadic. You can notice 

that some of the tests for both point A and B are experiencing massive increased in 

drift over a minute period. It is unclear what is causing the massive increases in the 

drift. In some of the case they do not continue to increase at the same magnitude, 

while in others they do. The unexpected increases are very perplexing, we can give 

a few explanations as to why they are occurring but we will not be able to prove or 

disproved them until more rigours experiments are performed in future work. We 

theorize that there are two things that could be creating such increases, one: the 

Perception Neurons “drift correction” had a heart attack, causing the legs and/or 

feet to become bent, thus moving more forward then they were previously; or two: 

it is due to a network dropout or lag.   
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Figure 4-6: Point A, amount of deviation from the starting location along the X axis for each minute. 

 

 

Figure 4-7: Point B, amount of deviation from the starting location along the X axis for each minute. 
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Figure 4-8: Point A, amount of deviation from the starting location along the Z axis for each minute. 

 

Figure 4-9: Point B, amount of deviation from the starting location along the Z axis for each minute. 
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4.1.2.5 Statistical Analysis of Drift (Metres) Over Time (Minutes) 

A two sample t- test was performed on the data to determine if the population 

means of point A and B are the same. We do not know the variance of the data, so 

we assume them to be unequal. Our alpha value is 0.05, this means that we can 

either reject or accept the null hypothesis with a confidence level of 95%. The null 

hypothesis in this case is that the means of the data are not significantly different, 

whereas the alternative hypothesis states that the means of the data are 

significantly different. The null hypothesis is accepted if the P value is higher than 

the alpha (0.05), if it is less the alternative hypothesis is accepted. 

 

Figure 4-10: Two- sample t-test, assuming unequal variance between each identical axis of point A and B for 

each test in the good motion capture data set. The green highlight shows that the P value being higher than the 

alpha (0.05). Therefore, we accept the null hypothesis.  

 

Figure 4-11: Two- sample t-test, assuming unequal variance between each identical axis of point A and B for 

each test in the bad motion capture data set. The green highlight shows that the P value being higher than the 

alpha (0.05). Therefore, we accept the null hypothesis. 

 

Figure 4-12: Two- sample t-test, assuming unequal variance between each opposite axis of point A for each test 

in the good motion capture data set. The green highlight shows that the P value is higher than the alpha (0.05). 

Therefore, we accept the null hypothesis. Whereas, the yellow highlight shows the P value being smaller than the 

alpha (0.05). Therefore, we reject the null hypothesis. 

Calculation Test 1: A:X, B:X Test 1 A:Z, B:Z Test 2 A:X, B:X Test 2: A:Z, B: Z Test 3 A:X, B:X Test 3: A:Z, B: Z Test 4 A:X, B:X Test 4: A:Z, B: Z

df 16 16 14 14 12 13 14 13

t Stat -0.908523526 -0.203030184 -0.099826234 -0.167462768 0.732170422 0.055633815 -0.208160228 -0.251637902

P(T<=t) two-tail 0.377083612 0.841670911 0.921897681 0.869400834 0.478121423 0.95647948 0.838101741 0.805255127

t Critical two-tail 2.119905299 2.119905299 2.144786688 2.144786688 2.17881283 2.160368656 2.144786688 2.160368656

Test 5 A:X, B:X Test 5: A:Z, B: Z Test 6 A:X, B:X Test 6: A:Z, B: Z

df 14 11 14 12

t Stat -0.204379336 -0.120777712 0.505278161 1.879498009

P(T<=t) two-tail 0.840998427 0.906045016 0.62122434 0.08467079

t Critical two-tail 2.144786688 2.20098516 2.144786688 2.17881283

Good Data Set t-Test: Two-Sample Assuming Unequal Variance, Between Each Identical Axis of Point A and B

Calculation Test 1: A:X, B:X Test 1 A:Z, B:Z Test 2: A:X, B:X Test 2 A:Z, B:Z Test 3: A:X, B:X Test 3 A:Z, B:Z Test 4: A:X, B:X Test 4 A:Z, B:Z

df 14 14 9 10 14 14 12 14

t Stat -0.355149537 -0.135337601 1.480279652 -0.135337601 0.135495329 -0.179082163 -0.626768792 -0.106864435

P(T<=t) two-tail 0.727771109 0.894271573 0.172931926 0.067908647 0.894149158 0.860439045 0.542551292 0.916412788

t Critical two-tail 2.144786688 2.144786688 2.262157163 2.228138852 2.144786688 2.144786688 2.17881283 2.144786688

Bad Data Set t-Test: Two-Sample Assuming Unequal Variance, Between Each Identical Axis of Point A and B

Calculation Test 1: A:X, A:Z Test 2: A:X, A:Z Test 3: A:X, A:Z Test 4: A:X, A:Z Test 5: A:X, A:Z Test 6: A:X, A:Z

df 10 12 10 13 7 12

t Stat -4.077042239 -2.689975522 -5.825909154 -2.005500304 2.528354862 0.431437389

P(T<=t) two-tail 0.002224897 0.019670736 0.000166974 0.066185001 0.03932737 0.673799696

t Critical two-tail 2.228138852 2.17881283 2.228138852 2.160368656 2.364624252 2.17881283

Good Data Set t-Test: Two-Sample Assuming Unequal Variance, Between Each Axis of opposite axis for Point A
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Figure 4-11 and Figure 4-12 show that there is no significant difference between the 

amount of drift observed from point A and point B on the identical axis’s of each 

test. Due to the identical axis’s of point A and B having no significant difference in 

population mean we ran a second t-test comparing the opposite axis’s for only 

point A (Figure 4-13). The results from running the t-test on the opposite axis’s 

shows that there is the potential for there to be a significant difference between 

the X and Z axis’s for the majority of the tests. The reason is unclear- but it is 

possible that it is due to some kind of difference in the calibration of the sensors, 

and as such needs to be taken into consideration when designing the dimensions of 

the virtual environment as the results show there can be a significant difference 

between the X and Z axis’s.  

4.1.3 Discussion and recommendations of virtual environment dimensions. 

In chapter 4.1.2.5 we discovered that there is a significant difference in the 

population means of the drift on the X axis and Z axis. This means that when 

designing the environment we can assume that the drift on X and Z axis will 

experience significantly different amounts of drift.  If we refer to chapter 4.1.2.2-

Figure 4-4 we can corroborate the t-test values by visually looking at the difference 

in drift on each axis. Figure 4-4 also shows that there is no consistent pattern of less 

drift occurring on the X axis when compared to the Z or vice versa. This means that 

we will not be able to set the dimensions of the virtual world to be based on the 

drift that occurred on each axis, instead we will have to assume that the highest 

amount of drift; 5.56m from the bad motion capture data set on the Z axis from 8 

minutes of continuous use, will also be able to occur on the X axis.  Additionally, we 

need to consider the impact that the incorrect angle of motion observed in chapter 

4.1.2.3 will have on the environment- as it is causing an additional positional offset 

of the avatar on the Z axis. The highest angle of motion observed was 13.7 degrees, 

while the lowest was 2.8 degrees, with an average of about 9.6 degrees. When 

calculating the safe dimensions for the virtual environment we will have to assume 

that the worst case scenarios from our obtained results.  
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Formulas for the Offset of the Drift. 

𝑋 𝑎𝑥𝑖𝑠 𝑑𝑟𝑖𝑓𝑡 𝑝𝑒𝑟 𝑚𝑖𝑛𝑢𝑡𝑒 =
𝐻𝑖𝑔ℎ𝑒𝑠𝑡 𝑇𝑜𝑡𝑎𝑙 𝑑𝑟𝑖𝑓𝑡 (𝑚)

𝑇𝑖𝑚𝑒 𝑝𝑒𝑟𝑖𝑜𝑑 (𝑚𝑖𝑛)
 

Equation 4-1: Where highest total drift = 5.56m and time period = 8 minutes 

Therefore, for every minute of use we have to account for 0.695m of drift on the X 

axis. 

𝑍 𝑎𝑥𝑖𝑠 𝑑𝑟𝑖𝑓𝑡 𝑝𝑒𝑟 𝑚𝑖𝑛𝑢𝑡𝑒

=
𝐻𝑖𝑔ℎ𝑒𝑠𝑡 𝑇𝑜𝑡𝑎𝑙 𝑑𝑟𝑖𝑓𝑡 (𝑚)

𝑇𝑖𝑚𝑒 𝑝𝑒𝑟𝑖𝑜𝑑 (𝑚𝑖𝑛)
+ (𝑇𝑎𝑛(𝜃) ∗ 𝑇𝑟𝑎𝑣𝑒𝑙𝑒𝑑 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒) 

Equation 4-2: Where highest total drift = 5.56m, time period = 8 minutes, 𝜃 is the highest angle of motion = 13.7 

and travel distance = 15m. 

Therefore, for every minute of use we have to account for 0.695*(minutes) + 3.65m 

on the Z axis.  

In hindsight, it should be noted that you technically only need to account for 

the 3.65m on one of the Z axis sides, if you know the direction the angle of 

motion is offsetting the avatars position on  the Z axis in relation to the users 

real life movement. In our case the avatar was only being offset on the right 

hand side of the participant and on the positive side of the Z axis. Therefore, 

we only needed to take the angle of motion into account for the positive side 

of the Z axis.  
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4.2 Phase 2: Virtual Reality Experiment, Investigating How an Individual 

Navigates through Crowds. 

Our previous experiment investigated exactly how much we would have to offset 

the dimensions of the virtual world for our virtual reality experiment to be safe.  

This experiment aims to investigate how individual pedestrians navigate through 

crowds of realistic group formations with different visual appearances. To that end 

we will also validate our completely wireless virtual reality framework by using it in 

this experiment. 

4.2.1 Framework and Experiment Design 

The hardware and software framework for this experiment has been outlined in 

chapter 3. 

4.2.1.1 Virtual Environment and Real-World Testing Area 

Using the formulae from chapter 4.1.3 we are able to determine safe dimensions 

for the virtual environment. The real world testing area that we have to work with is 

10 metres in width and 19 metres in length. Additionally, the experiment is 

expected to take less than 4 minutes to complete, the participants virtual avatar’s 

position will be reset at the ~2 minute mark. This means that the virtual world 

needs to be at least 1.39 units smaller on each side of the X axis, and at least 5.04 

units smaller on each side of the Z axis.  Factoring these dimensions into the design 

of the virtual world left with a virtual world that was 15 units long on the X axis and 

5 units wide on the Z axis. (Figure 4-13) Furthermore, the participants began the 

experiment in the middle of both the virtual world and real world on the Z axis 

(width), and where 2 metres/units away from the end of the X axis (length). This 

was especially important to allow for there to be ~ 5 metres of real-world space on 

each width side to prevent the incorrect angle of motion from making the 

participants walk out of the real world safe zone (red rectangle) 

The setting of the virtual world was not designed to be of any significance for this 

experiment; it is an outside footpath area whose boundaries are fenced off to let 

the participants know they cannot go out of the virtual bounds.  
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Figure 4-13: Virtual environment and real-world testing area overlay. 

4.2.1.2 Experiment Scenarios 

In this experiment the participants are tasked with walking to easily visible cubes on 

opposite sides of the virtual environment. There are two separate experiment tests 

the normal appearance test where the virtual people appear as normal people and 

the social appearance test where the virtual people have an easily distinguishable 

social connection (soldiers) (Figure 4-14)  

 

Figure 4-14: On the left is the normal appearance test models, and on the right is the social appearance test 

models. 

Figure 4-15 shows the different variables being tested during the 4 experiment 

tests.  The first experiment to be run will be the normal appearance tests. When the 

participant is comfortable inside the virtual environment they are able to interact 
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with an object in the virtual world to begin the experiment. This triggers the first 

test to begin where the participant is tasked with navigating the virtual crowd to 

reach and interact with an easily visible object at the end of the virtual world 

boundary- which will trigger the second test. It should be noted that after the first 

and second test the participant’s virtual avatars position will be reset to remove the 

accumulated drifting errors before performing test three and four; which has the 

same process as test one and two.  

  

 

 

 

 

 

 

 

 

Figure 4-15: Shows the different variables being tested during the Experiment. 

4.2.1.3 Data Collection 

The data to be collected during the experiment is quite extensive and is being 

written to .CSV files every 0.1 seconds. 

 Positional and rotational(X, Y, Z) of each of the bones of the participant’s 

avatars Skelton. 

 Participant’s avatars head position and rotation (X, Y, Z). 

 Every virtual agent’s position(X, Y, Z), Group ID, Agent ID and direction of 

movement(X+ or X-). 

We are also collecting qualitative data in the form of surveys and questionnaires 

that are to be filled out after the experiment. 

The Variables That are Tested. 

Test Number Gaze behaviour Appearance Density of Crowd 

1 Back and front Facing Normal Low 

2 Back and front Facing Normal Moderate-High 

3 Back and front Facing Social-link Low 

4 Back and front Facing Social-link Moderate-High 
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4.2.2 Data Analysis 

We had a total of 10 people (1 woman and 9 men) volunteer to take part in our 

virtual reality experiment investigating how an individual navigates though a virtual 

crowd. However only 9/10 participants successfully completed the experiment 

tasks. The participants where aged between 21 and 45 with an average combined 

age of 26 and only 50% had used a virtual reality head mounted display before 

taking part in our virtual reality study. However, on a scale of 1 to 7 where 7 is very 

good the participants scored an average of 5.2 for being “very good” at 3D 

videogames.  

Figure 4-16 shows the basic visualisation of the data and includes, the participant’s 

velocity and head rotation. Due to time constraints we were unable to visualise the 

participants avatars bone data. 

 

Figure 4-16: Basic Visualisation of the data. 

The visualisation was observed visually to determine the navigational decisions and 

strategies of the participants. We collected the following data from these 

observations: 

 Distance of avoidance (Going around). 

 Distance of gap (Going through). 

 Velocity that the participant is traveling when the decision occurs, 

 The pitch(X) and yaw(Y) rotation of the participants head.  
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4.2.3 Results 

We used a true/false model for visualising the navigation decisions of our 

participants. Where 1= they went around/through and 0 = they didn’t go 

around/through. Two sample t-Test’s assuming unequal variances with an alpha 

level of 0.05 where run on our collected qualitative data to determine if the 

decision to go through or around the virtual agent groups is statistically significant. 

4.2.3.1 Limitations 

From reviewing the visualisation of each of the participants navigating through the 

virtual crowds we found that the majority of the participant’s did not begin moving 

towards the goal object as soon as the experiment was started. The simulation was 

designed with the assumption that the participants would begin moving as soon as 

the virtual agents where spawned into the scene. Unfortunately, this means that 

the majority of the participants did not have as many chances to avoid the back 

facing virtual agents as they did the front facing virtual agents. Therefore, we will be 

unable to draw fair comparisons between the avoidance decisions of the front 

facing agent’s compared to the back facing agents.  

4.2.3.2 Head Mounted Display Bias 

We expect that our lack of distortion correction for the head mounted display and 

the head tracking latency of up to 89.67ms will introduce some degree of bias into 

the study. The latency of our completely wireless head mounted display solution 

could be compared to commercial wired variants such as the HTC Vive or the Oculus 

Rift, which achieve reported latencies of approximately 20-30ms(depending on the 

application and software optimisation).  It would not be unreasonable to suggest 

that there may be some qualitative difference in avoidance decision if the 

participant is extremely uncomfortable inside the virtual world. On a scale of 1 to 7, 

where 7 is no motion sickness or disorientation, the participants scored an average 

of 4.5/7. We feel that while not terrible, this score may be reason to suspect some 

additional bias in our results. 
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4.2.3.3 Combination of All Tests: Through or Around  

Combining the decision data from each of the 4 tests; normal appearance + high 

density, normal appearance + low density, social-link appearance + high density and 

social-link appearance + low Density.  We a found that 60.8% of participants went 

around the front facing virtual agent groups, while 39.2% of participants went 

through the front facing virtual agent groups. The t-Test reports that the 

participants decisions to go through or around the front facing virtual agent groups 

is not statistically significantly different; p=0.081(Figure 4-17). 

 

Figure 4-17: T-Test going through or around front facing virtual agent groups. 

56.25% of the participants navigated around the back facing virtual agent groups, 

whilst 43.75% navigated through the back facing virtual agents. The t-Test reports 

that the participants decisions to go through or around the back facing virtual agent 

groups is not statistically significantly different; p=0.63(Figure 4-18). 

 

Figure 4-18: T-Test going through or around back facing virtual agent groups. 
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4.2.3.4 High Density; Social and Normal Appearance: Around Front Facing 

We a found that 60% of participants went around the front facing normal appearing 

virtual agent groups, while 40% of participants went around the front facing social-

link appearing virtual agent groups. The t-Test reports that the participants 

decisions to go around the normal appearing virtual agent groups and social-link 

appearing virtual agent groups is not significantly different; p=0.39(Figure 4-19). 

 

Figure 4-19: T-Test, going around: high density; normal appearance vs social-link appearance, for front facing 

virtual agent groups. 

4.2.3.5 High Density; Social and Normal Appearance: Around Back Facing 

We a found that 75% of participants went around the back facing normal appearing 

virtual agent groups, while 25% of participants went around the back facing social-

link appearing virtual agent groups. The t-Test reports that the participants 

decisions to go around the normal appearing virtual agent groups and social-link 

appearing virtual agent groups is not significantly different; p=0.28(Figure 4-20). 

 

Figure 4-20: T-Test, going around: high density; normal appearance vs social-link appearance, for back facing 

virtual agent groups. 
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4.2.3.6 High Density; Social and Normal Appearance: Through Front Facing 

We a found that 50% of participants went through the front facing normal 

appearing virtual agent groups, while 50% of participants went through the front 

facing social-link appearing virtual agent groups. The t-Test reports that the 

participants decisions to go through the normal appearing virtual agent groups and 

social-link appearing virtual agent groups is not significantly different; p=1(Figure 4-

21). 

 

Figure 4-21: T-Test, going through: high density; normal appearance vs social-link appearance, for front facing 

virtual agent groups. 

 

4.2.3.7 High Density; Social and Normal Appearance: Through Back Facing 

We a found that 0% of participants went through the back facing normal appearing 

virtual agent groups, while 100% of participants went through the back facing 

social-link appearing virtual agent groups. The t-Test reports that the participants 

decisions to go through the normal appearing virtual agent groups and social-link 

appearing virtual agent groups is not significantly different; p=1(Figure 4-22). 

 

Figure 4-22: T-Test, going through: high density; normal appearance vs social-link appearance, for back facing 

virtual agent groups. 
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4.2.3.8 Low Density; Social and Normal Appearance: Around Front Facing 

We a found that 15.3% of participants went around the front facing normal 

appearing virtual agent groups, while 84.6% of participants went around the front 

facing social-link appearing virtual agent groups. The t-Test reports that the 

participants decisions to go around the normal appearing virtual agent groups and 

social-link appearing virtual agent groups is significantly different; p=0.002(Figure 4-

23). 

 

Figure 4-23: T-Test, going around: low density; normal appearance vs social-link appearance, for front facing 

virtual agent groups. 

4.2.3.9 Low Density; Social and Normal Appearance: Around Back Facing 

We a found that 40% of participants went around the back facing normal appearing 

virtual agent groups, while 60% of participants went around the back facing social-

link appearing virtual agent groups. The t-Test reports that the participants 

decisions to go around the normal appearing virtual agent groups and social-link 

appearing virtual agent groups is not significantly different; p=0.62(Figure 4-24). 

 

Figure 4-24: T-Test, going around: low density; normal appearance vs social-link appearance, for back facing 

virtual agent groups. 
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4.2.3.10 Low Density; Social and Normal Appearance: Through Front Facing 

We a found that 70% of participants went through the front facing normal 

appearing virtual agent groups, while 30% of participants went through the front 

facing social-link appearing virtual agent groups. The t-Test reports that the 

participants decisions to go through the normal appearing virtual agent groups and 

social-link appearing virtual agent groups is not significantly different; 

p=0.062(Figure 4-25). 

 

Figure 4-25: T-Test going through: low density; normal appearance vs social-link appearance for front facing 

virtual agent groups. 

 

4.2.3.11 Low Density; Social and Normal Appearance: Through Back Facing 

We a found that 50% of participants went through the back facing normal 

appearing virtual agent groups, while 50% of participants went through the back 

facing social-link appearing virtual agent groups. The t-Test reports that the 

participants decisions to go through the normal appearing virtual agent groups and 

social-link appearing virtual agent groups is not significantly different; p=1(Figure 4-

26). 

 

Figure 4-26: T-Test going through: low density; normal appearance vs social-link appearance for back facing 

virtual agent groups. 
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4.2.3.12 Velocity of Participants 

We performed the experiment expecting to observe the participants moving slower 

in the high density tests than the low density tests. However, this is not the case 

with an average velocity of 0.65m/s for the low density social-link appearance 

experiments and 0.67m/s for the high density social-link appearance experiments. 

The normal appearance experiments are similar with an average velocity of 0.61m/s 

for the low density and 0.63/s for the high density. The reason for the difference is 

possibly due to the high density tests not having enough virtual agents present. In 

addition, during the high density experiment the virtual agents formed 2 lanes; one 

moving towards the participant and the other moving in the same direction (Figure 

4-27).The majority of the participants (90%) actually exhibited some degree of 

crowd following behaviour where they followed the virtual agent groups moving in 

the same direction they needed to go. The majority of the participants exhibiting 

following behaviour means that they did not have to spend velocity navigating 

around oncoming agents like they did in the low density experiment. 

 

Figure 4-27: High density virtual agent lane formations and following behaviour. 
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5 Discussion and Comparison 
As a result from conducting our virtual reality experiment in chapter 4.2 we have 

confirmed that our virtual reality framework is capable of observing qualitatively 

similar results to previous researchers. Bruneau observed his participants going 

around the front facing crowds with a social-link 54.4% of the time, he also found 

this to be statistically significant [12]. We also observed this behaviour in our low 

density experiment where 85% of our participants decided to go around the virtual 

agent groups with an easily visible social-link, our results were also statistically 

significant. We observed a similar correlation of less participants going through the 

front facing virtual agent groups with a social-link appearance.  With only 30% of 

participants going through the front facing virtual agent groups with a social-link. 

Although, we found there to not be a statistical difference at the 95% confidence 

level (alpha=0.05). However, there is a statistical difference at the 93% confidence 

level (alpha=0.07).   We did not see this trend continue in the high density test or 

when we combined the low density test results with the high density test results.  

We expect this to be due to the majority of the participants in the high density tests 

not putting themselves in a position to need to be marked down as going around 

the oncoming front facing agents, as 90% of them conducted following behaviour of 

the virtual agents with the same direction of motion as them at one point or 

another during the virtual reality experiment (Figure 4-27).  From these results we 

can conclude that during a low density environment people are able to make more 

navigation decisions than in a high density environment (where they often adopt 

following behaviour). While making more navigational decisions (low density) 

people are more likely to circumvent social-link appearing groups. 

We did not see the same correlation of avoidance of back facing virtual people as 

we did with the front facing avoidance. This is most likely due to not having enough 

data, as discussed previously; the majority of the participants did not have as many 

chances to conduct avoidance around or through the back facing groups.  

We observed a mean going around distance of 0.33m for the front facing agents 

and 0.35m for the back facing agents. Interestingly, this is confirming the modified 

personal space of virtual reality users observed in the literature [19], [26]. Real 
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people observe a minimum distance between other real people of approximately 

0.4m [28].  It should be noted that 70% of the participants reported “walking into” 

the virtual people during the interview after the experiment. However, the 

magnitude of the participants walking into the virtual people was actually just 

clipping them in most cases, only 30% of the participants actually fully walked 

through a virtual person. Only 13.3% of the 4 experiments conducted were affected 

by a participant completely walking into a virtual person. Therefore, we can 

conclude that the participants did have some degree of trouble controlling their 

virtual avatars around the virtual people. This might be explained by the distance 

compression effect introduced from viewing the world through a digital display. 

We can confirm the digital compression effect from viewing the world through a 

digital display observed in the literature [15, 16, 17]. During the interview we asked 

the participants how long the virtual environment was. We received answers in the 

range of 5-14m, none of which is the actual distance of the length of the virtual 

environment which was 15m. The average of perceived virtual environment length 

was 9.7m. It should be noted that the distance compression effect could have been 

enhanced due to the lack of distortion correction on our stereoscopic camera.  

During the experiment run’s we noticed that the participants where not moving 

100% naturally. We can confirm previous research that reported virtual reality users 

moving with an increased gait instability [27].  

Our Virtual reality framework was positively received with an enjoyment score of 

5.6 out of 7(7 being very enjoyable).  
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6 Summary and Future Work 

6.1 Summary 

A completely wireless virtual reality framework that allows users to control virtual 

avatars by physically walking is becoming increasingly necessary as virtual reality 

technologies such as the Oculus Rift and HTC Vive are pushed into the mainstream 

market. Virtual reality is no longer an expensive tool only employed by the better 

funded researchers. To this end we proposed to create a novel virtual reality 

framework which lays the ground work for future researchers to utilize. The use of 

our virtual reality framework for research is validated through a virtual reality study 

which aims to help fill the knowledge gap of how individual pedestrians navigate 

through crowds.  

In chapter 2 we focused on investigating the literature of using virtual reality 

systems for human behaviour research; exploring pedestrian group dynamics and 

the limitations of more conventional pedestrian data gathering methods.  

In Chapter 3 we explored the implementation of our completely wireless virtual 

reality framework and the implementation of our virtual reality study investigating 

individual’s avoidance groups. Our virtual reality framework consists of a Perception 

Neuron full body 18 Neuron inertial motion unit based motion capture kit, head 

mounted display in the form of a Homido with a Moto X 2nd Gen mobile device as 

the display; and a High end performance desktop computer. These components are 

all connected to each other wirelessly to allow completely un-restricted movements 

while immersed in the virtual environment.  Our software framework includes the 

use of the A* PathFinding Project for Unity3D’s RVO based Local Avoidance 

implementation for the controlling of our virtual agents. We developed a novel way 

to force the Local Avoidance agents into group formations based on the three group 

formations observed by Moussaid[7].  For the head tracking of the head mounted 

display we used the position and rotation values from the head mounted Neuron 

sensor from the Perception Neuron kit and applied that to our stereoscopic camera 

ripped from the Google Cardboard Unity3D integration package. 
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In Chapter 4 Phase 1 we explored the amount of drift that the Perception Neuron 

suit experienced with continuous use over a time period of 8 minutes. Due to 

inertial motion sensors susceptibility to drift over time it was imperative to know 

exactly how much the Perception Neuron suit drifts overtime when it is being used 

as the avatar controller for a 3D virtual reality simulation or game with a head 

mounted display.  When designing the 3D environment we needed to take into 

account he drift that the suit creates to prevent the users from walking into real life 

walls or obstacles.  Through our experimentation we developed two algorithms to 

determine the minimum amount of offset that the virtual world needed to be on 

both the X and Z axis.  

In Chapter 4 Phase 2 we explored the use of our virtual reality framework to 

investigate how individual pedestrians navigate through virtual crowds. 10 

participants volunteered for the experiment.  We investigated the impact of 

realistic group formations based on Moussaids research [7]. We attempted to 

investigate the impact of both front and back facing agent groups as well as the 

impact of an easily visible social-link appearance on the participant’s avoidance 

decisions.  

In Chapter 5 we discussed the results from our virtual reality study investigating 

how individuals avoid groups. We discovered that our virtual reality framework was 

able to achieve qualitatively accurate results based on previous works in the area. 

Additionally, we found that we were able to further prove the distance compression 

effect, increased gait instability and modified personal space of people in virtual 

environments. Our Virtual reality framework was positively received with an 

enjoyment score of 5.6 out of 7(7 being very enjoyable). 
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6.2 Future work 

The virtual reality framework developed in this thesis is currently the best way to 

obtain completely wireless-unrestricted virtual reality. However, it is true that the 

head mounted display in particular could be improved by using an Oculus rift or HTC 

Vive, but if money is an issue the Homido and smartphone combo offers a decent 

alternative. To this end future improvements of the framework would be the 

integration of either the Oculus Rift, HTC Vive or equivalent head mounted display.  

As the technology in both the motion capture department and the head mounted 

display department mature using virtual reality for research purposes will become 

increasingly popular as we will begin to see some of the biases of virtual reality 

being reduced.   

For the study of individual pedestrians navigating through groups we could further 

investigate the effects of the back facing virtual agents, as the data that we 

collected on this interaction was lacking. Additionally, Co-op virtual reality 

simulations could be employed where multiple individuals could navigate through a 

virtual crowd simultaneously- this would greatly reduce the amount of time needed 

to spend running experiments.   
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